Mosonik, a 3.25 Ma extensively dissected stratovolcano located in the North Tanzanian Divergence of the East African Rift, consists predominantly of phonolite and three types of phonolitic nephelinite distinguished by the presence or absence of amphibole or garnet antecrysts and differing populations of complexly zoned antecrystal and phenocrystal pyroxenes. The antecryst–phenocryst assemblage is typical of hybrid lavas derived by magma mixing. Compositional data are given for all major minerals. Owing to the high modal proportions (30–60 vol. %) of antecrysts and phenocrysts of pyroxene and nepheline plus the hybrid character of the lavas, bulk-rock compositions do not represent those of the parental liquids. Thus, assimilation–fractional crystallization modelling of the bulk-rock major- and trace-element abundances is inappropriate and an unevolved parental magma cannot as yet be defined. Sr–Nd isotopic data for Mosonik and other Older Extrusive Series rocks suggest derivation by partial melting of ancient metasomatized lithospheric mantle with mixing of Sr and Nd from two sources coupled with minor lower crustal contamination, melting being induced by the plume currently impinging on the Tanzanian craton, and representing the initial interaction of the plume with the cratonic lithosphere. In contrast, the Younger Extrusives, as exemplified by Oldoinyo Lengai nephelinite–carbonatite volcanism, could be derived from this ancient metasomatized lithospheric mantle plus a recent plume-derived asthenospheric component and no contamination by crustal material. The isotopically and genetically distinct Natron–Engaruka melilitites are considered to represent direct adiabatic melting of the Tanzanian plume without lithospheric contributions. Carbonatites and melilite-bearing nephelinites also occur at Mosonik but are not considered in this study as they are only a very minor volumetric component of the volcano.