Voluntary food intake and the selection between foods are important subjects especially in ruminants in view of the economic importance of this class of animal and the complex digestive system with its attendant metabolic peculiarities. There is evidence that intake is limited by the capacity of the rumen as well as by metabolic factors; some theories assume that intake is controlled by the first limiting factor but this is not satisfying on physiological grounds and there is evidence that signals from feedback factors are integrated in an additive manner. It is now well established from research in which animals are given the chance to learn the metabolic consequences of eating food with a particular sensory profile, including a choice of foods, that animals including ruminants can adjust their diet, both quantitatively and qualitatively, to their nutrient requirements. It is proposed that they do this in order to minimise the total of the discomfort generated by the several signals from various body systems. The learning process is aided by the considerable day-to-day variation often seen in the intake of individual animals. An optimisation model is proposed and presented in a simple form, involving the addition of discomforts (calculated as the square of the deviation of the supply of metabolisable energy, crude protein and neutral-detergent fibre) and iterative elucidation of the intake at which total discomfort is minimal. With parameters appropriate for growing lambs the model provides reasonable agreement with observations, both in terms of daily intake and selection between foods of different protein contents. Manipulation of food composition and of nutrient requirements produces predictions broadly in agreement with reality except that protein deficiency has less severe consequences for the model than for real animals; it is proposed that protein deficiency be given more weighting than protein excess, and this may be true for other resources as well. This model is proposed as a philosophy and a starting point for further development and is not purveyed as a complete, working model. It nevertheless provides support for the concept of total minimal discomfort as a suitable base from which to view the control of intake and selection in all animals.