We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Microbiome research in the last two decades has delivered as a key finding that the human intestine hosts a unique and complex ecosystem with many variables affecting the composition of the microbiota and in turn its function in metabolism and immune defence. Hundreds of external (environmental) factors have meanwhile been identified as significantly associated with bacterial biomass and diversity and, amongst these, diet is considered as a key determinant of microbial populations. However, dietary intervention studies, including those with fermentable substrates that have bulk effects on bowel functions, have revealed only very minor effects on overall microbiome composition and usually show only a very few species changing in population size. What that means in the context of hundreds of different species coexisting in competition or mutualism in the human colon is far from understood. This review addresses some of the current limits in research on diet effects by taking anatomical and physiological features of the intestine into consideration. It also provides some recommendations on future human studies needed to assess how the diet influences the microbiome and associated effects on metabolic health.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.