We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Researchers studying item response models are often interested in examining the effects of local dependency on the validity of the resulting conclusion from statistical inference. This paper focuses on the detection of local dependency. We provide a framework for viewing local dependency within dichotomous and polytomous items that are clustered by design, and present a testing procedure that allows researchers to specifically identify individual item pairs that exhibit local dependency, while controlling for false positive rate. Simulation results from the study indicate that the proposed method is effective. In addition, a discussion of its relation to other existing methods is provided.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.