We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new method for predicting manoeuvre loads on a large transport aircraft with a swept-back wing and a load alleviation system based on control surface deflections is developed. For this purpose, three-dimensional Reynolds-averaged Navier–Stokes (RANS) simulations of the rigid wing–fuselage configuration are performed while the aerodynamics of the tailplane are estimated by means of handbook methods. For a closer analysis, different quasi-steady pitching manoeuvres are chosen based on the CS-25 regulations. One of these manoeuvres is also simulated with active load alleviation, leading to a reduction in the wing-root bending moment by more than 40%. Besides demonstrating the potential of the considered load alleviation system, it is shown which manoeuvres are especially critical in this context and which secondary effects come along with load alleviation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.