We study a form of optimal transportation surplus functions which arise in hedonicpricing models. We derive a formula for the Ma–Trudinger–Wang curvature of thesefunctions, yielding necessary and sufficient conditions for them to satisfy(A3w). We use this to give explicit new examples of surplus functionssatisfying (A3w), of the formb(x,y) = H(x + y)where H is a convex function on ℝn. We alsoshow that the distribution of equilibrium contracts in this hedonic pricing model isabsolutely continuous with respect to Lebesgue measure, implying that buyers are fullyseparated by the contracts they sign, a result of potential economic interest.