We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The presence of surfaces near a swimmer can impact dramatically its ability to generate propulsive forces for locomotion. In this eleventh chapter, we review theways in which boundaries influence cellular propulsion from a hydrodynamic standpoint. At the cellular level, both the distribution of cells and their swimming kinematics are affected. On smaller length scales, boundaries govern the ability of appendages such as cilia to produce net forces and flow. We first consider length scales much larger than those of the cells. We show how the method of images for hydrodynamic singularities can be used to demonstrate that long-range hydrodynamic interactions lead to the attraction of swimming cells by boundaries and to a change in the swimming kinematics of bacteria from straight to circular. We then examine the dynamics of swimming cells in shear flows and explain how the presence of a surface leads to cell reorientation and upstream swimming. We next revisit the waving sheet model near a boundary to show how increased friction impacts locomotion kinematics. We finish by zooming in to the sub-cellular level and addressing the role played by surfaces on force and flow generation by cilia.
An expression for the first-passage density of Brownian motion to a curved boundary due to Daniels and Lerche is shown to give the same result as a different form due to the author. The equivalence is extended to continuous Gaussian Markov processes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.