We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Classical continuum mechanics focuses on the deformation field of moving continua. This deformation field is composed of the trajectories of all material elements, labeled by their initial positions. This initial-condition-based, material description is what we mean here by the Lagrangian description of a fluid motion. In contrast to typical solid-body deformations, however, fluid deformation may be orders of magnitude larger than the net displacement of the total fluid mass. The difficulty of tracking individual fluid elements has traditionally shifted the focus in fluid mechanics from individual trajectories to the instantaneous velocity field and quantities derived from it. These quantities constitutethe Eulerian description of fluids. This chapter surveys the fundamentals of both the Lagrangian and the Eulerian approaches. We also cover notions and results from differential equations and dynamical systems theory that are typically omitted from fluid mechanics textbooks, yet are heavily used in later chapters ofthis book.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.