We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give an equivalent definition of the local volume of an isolated singularity $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\rm Vol}_{\text {BdFF}}(X,0)$ given in [S. Boucksom, T. de Fernex, C. Favre, The volume of an isolated singularity. Duke Math. J. 161 (2012), 1455–1520] in the $\mathbb{Q}$-Gorenstein case and we generalize it to the non-$\mathbb{Q}$-Gorenstein case. We prove that there is a positive lower bound depending only on the dimension for the non-zero local volume of an isolated singularity if $X$ is Gorenstein. We also give a non-$\mathbb{Q}$-Gorenstein example with ${\rm Vol}_{\text {BdFF}}(X,0)=0$, which does not allow a boundary $\Delta $ such that the pair $(X,\Delta )$ is log canonical.
In this paper we solve the problem of desingularization of an absolutely isolated singularity of a differential equation, including the dicritical case. As an application, we prove the finiteness of the number of dicritical points in the blowing up tree of an absolutely isolated singularity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.