We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Conventional mixed models for the analysis of diet diary data have introduced several simplifying assumptions, such as that of a single standard deviation for within-person day-to-day variation which is common to all individuals.
Objective:
We developed a model in which the within-person standard deviation was allowed to differ from person to person.
Design:
The model was demonstrated using data on daily retinol intake from the Dietary and Nutritional Survey of British Adults. The data were from 7-day weighed dietary diaries. Estimation was performed by Markov chain Monte Carlo. Reliability of the model was assessed from the accuracy of estimation of the percentage of days on which various intakes were exceeded. For levels above the median retinol intake, estimation of percentages of days with excessive intakes was most accurate using the model with varying within-person standard deviation.
Setting:
A survey of British adults aged 16–64 years.
Subjects:
In total 2197 adults living in the UK, 1087 males and 1110 females.
Results:
Under the traditional model, estimated daily intake ranged from 716.4 to 1421.8 μg depending on age and sex, with a within-person standard deviation of 4298.9 μg. Under the new model, estimated average daily intake ranged from 388.9 to 518.3 μg depending on age and sex, but with a within-person standard deviation varying between subjects with a 95% range of 29 to 8384 μg. The new model was shown to predict the percentage of days of exceeding large intakes more successfully than the traditional model. For example, the percentage of days of exceeding the maximum recommended intake (9000 μg for men and 7500 μg for women) was 2.4%. The traditional model predicted no excessive intakes, whereas the new model predicted 2.9%.
Conclusions:
This model is potentially useful in dietary research in general and for analysis of data on chemical contaminants in foods, in particular.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.