The ability to acclimate quickly to changing environmental conditions is important for sessile organisms that cannot move to areas with more favourable conditions. Sponges are known to exhibit considerable phenotypic plasticity in response to environmental variability. However, most studies examining differences in sponge morphology have looked at spatial variation in morphological characteristics by comparing sponges at sites with differing environmental conditions. Here we explored the potential of two intertidal sponge species (Halichondria panicea and Hymeniacidon perlevis) to show seasonal acclimation to changing environmental conditions at two sites on the Welsh coast, UK. Both species had a higher proportion of inorganic tissue content in winter months, which correlated with higher levels of wave action and lower temperature, representing either an increase in spicule size/number or a loss of organic material. We also detected rapid decreases in organic content in some months, which corresponded with previously reported reproductive timings for the two species, and likely represent gamete release events. While the increased inorganic content in winter months may be a secondary consequence of reduced food and the sponges having to rely on organic reserves to meet metabolic demand, the higher level of inorganic material in winter likely makes sponges stiffer and stronger, and better able to deal with higher levels of wave action during winter months.