Seven kaolins from Georgia (southeastern U.S.A.), ranging from high to low commercial grade, were characterized by X-ray powder diffraction and chemical techniques to establish that the variation in quality was caused by impurities. The Ca and Cs cation-exchange capacities (CEC) varied from 2.67 to 8.17 and from 3.29 to 8.77 meq/100g, respectively. Selective dissolution and correlation analyses strongly indicated that expandable 2:1 minerals, particularly smectite (1.2-5.9%), were responsible for most of the observed variations in Ca CEC (r = 0.85*). The external surface CEC of kaolinite ranged from 0 to 1 meq/ 100 g. The positive significant correlation (r = 0.90**) between the Ca CEC and the K-mica content (03.9%) suggested that Ca CEC may be related to the degree of mica weathering through an expandable mineral stage.
The Cs-retention capacity (0.19–1.14 meq/100 g) was closely related to Cs-measured vermiculite content (r = 0.80*), and this content plus specific surface (R = 0.93**) or mica content (R = 0.86*). The Cs retention appeared to be primarily related to the presence of interlayer wedges at mica/vermiculite XY interfaces.