We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Imitation from Observation (IfO) prompts the robot to imitate tasks from unlabeled videos via reinforcement learning (RL). The performance of the IfO algorithm depends on its ability to extract task-relevant representations since images are informative. Existing IfO algorithms extract image representations by using a simple encoding network or pre-trained network. Due to the lack of action labels, it is challenging to design a supervised task-relevant proxy task to train the simple encoding network. Representations extracted by a pre-trained network such as Resnet are often task-irrelevant. In this article, we propose a new approach for robot IfO via multimodal observations. Different modalities describe the same information from different sides, which can be used to design an unsupervised proxy task. Our approach contains two modules: the unsupervised cross-modal representation (UCMR) module and a self-behavioral cloning (self-BC)-based RL module. The UCMR module learns to extract task-relevant representations via a multimodal unsupervised proxy task. The Self-BC for further offline policy optimization collects successful experiences during the RL training. We evaluate our approach on the real robot pouring water task, quantitative pouring task, and pouring sand task. The robot achieves state-of-the-art performance.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.