We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this randomized clinical study, we compared the intubation success rates of the intubating laryngeal mask airway with the GlideScope® in patients with normal airways. The primary hypothesis was that the intubating laryngeal mask airway was equally effective as the GlideScope® in terms of successful intubation times.
Methods
Sixty ASA I and II adult patients undergoing elective gynaecological surgery were randomly allocated into either the intubating laryngeal mask airway group or the GlideScope® group. After a standard anaesthetic intravenous induction, orotracheal intubation was performed. Time taken for successful tracheal intubation, ease of device insertion, difficulty of tracheal intubation, manoeuvres needed to aid tracheal intubation, number of intubation attempts, haemodynamic changes every 2.5 min interval for 5 min and complications during tracheal intubation were recorded.
Results
Time to successful intubation was longer (mean 68.4 s ± 23.5 vs. 35.7 s ± 10.7; P < 0.05), mean difficulty score was higher (mean 16.7 ± 16.3 vs. 7.3 ± 13.1; P < 0.05) and more intubation attempts were required in the intubating laryngeal mask airway group.
Conclusion
The GlideScope® improved intubation time and difficulty score for tracheal intubation when compared with the intubating laryngeal mask airway in our patients. Blind intubation through the intubating laryngeal mask airway offers no advantages over the GlideScope® in patients with normal airways. Despite its limitations, the intubating laryngeal mask airway is a valuable adjunct, especially in cases of difficult airway management when it can provide ventilation in between intubation attempts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.