We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The kernel extreme learning machine (KELM) is more robust and has a faster learning speed when compared with the traditional neural networks, and thus it is increasingly gaining attention in hyperspectral image (HSI) classification. Although the Gaussian radial basis function kernel widely used in KELM has achieved promising classification performance in supervised HSI classification, it does not consider the underlying data structure of HSIs. In this paper, we propose a novel spectral-spatial KELM method (termed as MF-KELM) by incorporating the mean filtering kernel into the KELM model, which can properly compute the mean value of the spatial neighboring pixels in the kernel space. Considering that in the situation of limited training samples the classification result is very noisy, the spatial bilateral filtering information on spectral band-subsets is introduced to improve the accuracy. Experiment results show that our method outperforms other kernel functions based on KELM in terms of classification accuracy and visual comparison.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.