We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A new technique utilizing Raman microscopy and Fourier transform infrared (FTIR) microsacopy is described. This technique uses thin films of oriented clay aggregates on glass slides suitable also for X-ray diffraction (XRD). Raman microscopy proved the most useful technique providing both better resolution of the OH-stretching bands and greater spectral resolution. Kaolinites from Washington County, Georgia, with varying defect structures involving layer stacking were intercalated with formamide and additional Raman bands were observed at 3610 and 3627 cm−1. A concomitant decrease in the inner-surface OH band intensities at 3695 and 3685 cm−1 occurred. These bands are attributed to the inner-surface OH hydrogen bonded to the formamide molecule through the C=O group. The 3627 cm−1 band is sharp with a half width of 7.5 cm−1 and comprises 11% of the total normalized band area. When two additional OH bands are observed at 3610 and 3627 cm−1 two C=O bands at 1674 and 1658 cm−1 are observed also. The two additional Raman inner-surface OH bands were not observed in the IR spectra. However, a band of low intensity was observed at 3590 cm−1. Models for the intercalation of formamide in kaolinites are proposed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.