Synthetic hectorite clay minerals were hydrothermally crystallized with direct incorporation of a series of five water-soluble polyvinyl alcohols (PVA) of molecular weights from 9000-146,000. The molecular weight of PVA had little effect on the success of hydrothermal hectorite synthesis, d-spacing or the amount of polymer incorporated. The basal spacings range from 19.5 Å to 20.8 Å and the amount of polymer incorporated ranges from 20 wt.% to 23 wt.%. Incorporation of PVA within the clay inter-layers, along with Li(I) ions to compensate the lattice charge, is indicated. Thermal gravimetric analysis and small angle neutron scattering were used to further examine the polymer-clay systems. Small PVA-clay crystallites that are coated with excess PVA are indicated. Removal of the polymer does not alter the extended synthetic clay network, and the nitrogen BET surface area increases from <5 m2/g to >200 m2/g.