We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Executive control over low-level information processing is impaired proximal to psychosis onset with evidence of recovery over the first year of illness. However, previous studies demonstrating diminished perceptual modulation via attention are complicated by simultaneously impaired perceptual responses. The present study examined the early auditory gamma-band response (EAGBR), a marker of early cortical processing that appears preserved in first-episode psychosis (FEP), and its modulation by attention in a longitudinal FEP sample.
Methods
Magnetoencephalography was recorded from 25 FEP and 32 healthy controls (HC) during active and passive listening conditions in an auditory oddball task at baseline and follow-up (4–12 months) sessions. EAGBR inter-trial phase coherence (ITPC) and evoked power were measured from responses to standard tones. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS).
Results
There was no group difference in EAGBR power or ITPC. While EAGBR ITPC increased with attention in HC, this modulation was impaired among FEP. Diminished EAGBR modulation in FEP persisted at longitudinal follow-up. However, among FEP, recovery of EAGBR modulation was associated with reduced PANSS negative scores.
Conclusion
FEP exhibit impaired executive control over the flow of information at the earliest stages of sensory processing within auditory cortex. In contrast to previous work, this deficit was observed despite an intact measure of sensory processing, mitigating potential confounds. Recovery of sensory gain modulation over time was associated with reductions in negative symptoms, highlighting a source of potential resiliency against some of the most debilitating and treatment refractory symptoms in early psychosis.
Although numerous neuroimaging studies have depicted neural alterations in individuals with obsessive–compulsive disorder (OCD), a psychiatric disorder characterized by intrusive cognitions and repetitive behaviors, the molecular mechanisms connecting brain structural changes and gene expression remain poorly understood.
Methods
This study combined the Allen Human Brain Atlas dataset with neuroimaging data from the Meta-Analysis (ENIGMA) consortium and independent cohorts. Later, partial least squares regression and enrichment analysis were performed to probe the correlation between transcription and cortical thickness variation among adults with OCD.
Results
The cortical map of case-control differences in cortical thickness was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms preferentially expressed across different cell types and cortical layers. These genes were specifically expressed in brain tissue, spanning all cortical developmental stages. Protein–protein interaction analysis revealed that these genes coded a network of proteins encompassing various highly interactive hubs.
Conclusions
The study findings bridge the gap between neural structure and transcriptome data in OCD, fostering an integrative understanding of the potential biological mechanisms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.