This paper presents a new method using hierarchical optimal control for path planning and calculating maximum allowable dynamic load (MADL) of wheeled mobile manipulator (WMM). This method is useful for high degrees of freedom WMMs. First, the overall system is decoupled to a set of subsystems, and then, hierarchical optimal control is applied on them. The presented algorithm is a two-level hierarchical algorithm. In the first level, interaction terms between subsystems are fixed, and in the second level, the optimization problem for subsystems is solved. The results of second level are used for calculating new estimations of interaction variables in the first level. For calculating MADL, the load on the end effector is increased until actuators get into saturation. Given a large-scale robot, we show how the presenting in distributed hierarchy in optimal control helps to find MADL fast. Also, it enables us to treat with complicated cost functions that are generated by obstacle avoidance terms. The effectiveness of this approach on simulation case studies for different types of WMMs as well as an experiment for a mobile manipulator called Scout is shown.