Acid-activated bentonites are utilized in many applications, including those that depend on their rheological properties and behavior, but little information is available regarding the rheological characteristics of this important industrial material. The purpose of this study was to investigate the effects of solids concentration, salt concentration, and pH value on the shear rate, shear stress, and other flow parameters of acid-activated bentonite suspensions. Activated Na-bentonite was prepared using sulfuric acid. Flow curves of the suspensions were modeled using the Herschel-Bulkley equation, which performed well for this system. The Herschel-Bulkley yield stress increased with the solids concentration and showed a maximum and minimum at the NaCl concentrations of 0.001 M and 0.01 M, respectively, and increased again slightly with further increases in NaCl concentration. The yield stress was at a maximum and a minimum at pH values of ≈5 and ≈7, respectively, followed by a slight increase with pH under alkaline conditions. The variations in dispersion rheological properties can be attributed to the change in the particle-association modes under different conditions.