Using fractions of the protein spectrum of the cat retina as immunogens, we have generated antibodies with substantial specificity for the Müller cells of the retina of cat, rabbit, guinea pig, and rat. The antibodies appear to bind to the filamentous components of the Müller cells and allow demonstration of the pattern of Müller cell endfeet at the inner surface of the retina, best seen in wholemount preparations. In sections and at the edge of wholemount preparations the somas and processes of the cells can be observed. Müller cells are more evenly distributed over the retina than ganglion cells, indicating that their proliferation continues during the differential growth of retina which continues into postnatal life. The morphology and distribution of the endfeet varies with the structures present at the inner surface of the retina. Where the axon bundles are thick, the endfeet are relatively small and are confined to narrow rows between bundles. Müller cell endfeet are also separated widely by large blood vessels. In both situations, it seems likely that Müller cells and astrocytes both contribute, perhaps competitively, to form the glia limitans of the inner surface of the retina. Where the somas of neurones are densely packed in the ganglion cell layer, the endfeet are small and numerous, forming rings around the somas. Where axon bundles, vessels, and somas are sparse, the endfeet appear largest and form a regular array.