Motivated by the investigation of probability distributions with finite variance but heavy tails, we study infinitely divisible laws whose Lévy measure is characterized by a radial component of geometric (tempered) stable type. We closely investigate the univariate case: characteristic exponents and cumulants are calculated, as well as spectral densities; absolute continuity relations are shown, and short- and long-time scaling limits of the associated Lévy processes analyzed. Finally, we derive some properties of the involved probability density functions.