Nowadays, the most widely used method for estimating location of autonomous vehicles in real time is the use of Global Navigation Satellite Systems (GNSS). However, positioning in urban environments using GNSS is hampered by poor satellite geometry due to signal obstruction created by both man-made and natural features of the urban environment. The presence of obstacles is the reason for the decreased number of observed satellites as well as uncertainty of GNSS positioning. It is possible that in some sections of the vehicle route there might not be enough satellites necessary to fix position. It is common to use software for static GNSS measurement campaign planning, but it is often only able to predict satellite visibility at one point. This article presents a proposal for dynamic GNSS mission planning using a Digital Terrain Model (DTM) and dead reckoning. The methodology and sample results of numerical experiments are also described. They clearly show that proper dynamic GNSS mission planning is necessary in order to complete a task by an autonomous vehicle in an obstructed environment.