We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To examine detail depth dose characteristics of ideal proton beams using the GATE Monte Carlo technique.
Methods:
In this study, in order to improve simulation efficiency, we used pencil beam geometry instead of parallel broad-field geometry. Depth dose distributions for beam energies from 5 to 250 MeV in a water phantom were obtained. This study used parameters named Rpeak, R90, R80, R73, R50, full width at half maximum (FWHM), width of 80–20% distal fall-off (W(80–20)) and peak-to-entrance ratio to represent Bragg peak characteristics. The obtained energy–range relationships were fitted into third-order polynomial formulae. The present study also used the GATE Monte Carlo code to calculate the stopping power of proton pencil beams in a water cubic phantom and compared results with the National Institute of Standards and Technology (NIST) standard reference database.
Results:
The study results revealed deeper penetration, broader FWHM and distal fall-off and decreased peak-to-entrance dose ratio with increasing beam energy. Study results for monoenergetic proton beams showed that R73 can be a good indicator to characterise a range of incident beams. These also suggest FWHM is more sensitive than W(80–20) distal fall-off in finding initial energy spread. Furthermore, the difference between the obtained stopping power from simulation and NIST data almost in all energies was lower than 1%.
Conclusion:
Detail depth dose characteristics for monoenergetic proton beams within therapeutic energy ranges were reported. These results can serve as a good reference for clinical practitioners in their daily practice.
To validate the Geant4 Application for Tomographic Emission (GATE) Monte Carlo simulation code by calculating the proton beam range in the therapeutic energy range.
Materials and methods
In this study, the GATE code which is based on Geant4 was used for simulation. The proton beams in the therapeutic energy range (5–250 MeV) were simulated in a water medium, and then compared with the data from National Institute of Standards and Technology (NIST) in order to investigate the accuracy of different physics list available in the GATE code. In addition, the optimal value of SetCut was assessed.
Results
In all energy ranges, the QBBC physics had a greater deviation in the ranges relative to the NIST data. With respect to the range calculation accuracy, the QGSP_BIC_EMY and QGSP_BERT_HP_EMY physics were in the range of statistical uncertainty; however, QGSP_BIC_EMY produced better results using the least squares. Based on an investigation into the range calculation precision and simulation efficiency, the optimal SetCut was set at 0·1 mm.
Findings
Based on an investigation into the range calculation precision and simulation yield, the QGSP_BIC_EMY physics and the optimal SetCut was recommended to be 0·1 mm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.