This paper presents two frontal plane algorithms for 3D dynamic bipedal walking. One of which is based on the notion of symmetry and the other uses reinforcement learning algorithm to learn the lateral foot placement. The algorithms are combined with a sagittal plane algorithm and successfully applied to a simulated 3D bipedal robot to achieve level ground walking. The simulation results showed that the choice of the local control law for the stance-ankle roll joint could significantly affect the performance of the frontal plane algorithms.