Most gyrodactylids have a haptor armed with a pair of hamuli, two connecting bars and 16 marginal hooks. In some gyrodactylids, however, the haptor is disc-shaped and reinforced by additional sclerites. The genus Polyclithrum has arguably the most elaborate haptor in this group. This study aimed to gain better understanding of the anatomy of Polyclithrum by examining neuromusculature and haptoral armament of Polyclithrum ponticum, a species parasitizing Mugil cephalus in the Black Sea, with emphasis on haptoral sclerites and musculature in connection with host-attachment mechanisms. Musculature was stained by phalloidin, the nervous system by anti-serotonin and anti-FMRFamide antibodies, and haptoral sclerites were visualized in reflected light. The study provided new information on sclerites: in addition to previously described supplementary sclerites (A1–6), ear-shaped sclerites (ESSs) and two paired groups of ribs, reflected light revealed a rod-shaped process on the ESSs and a pair of small posterior sclerites. The sclerites were shown to be operated by 16 muscles, the most prominent of which were two transverse muscles connecting the hamular roots, three muscles attached to sclerite A2, the muscle fibres of anterior ribs and a set of extrinsic muscles. The nervous system consists of a pair of cerebral ganglia connected by a commissure and three pairs of nerve cords that unite in the haptor to form a loop between the opposite cords. The arrangement of sclerites and muscles suggests that Polyclithrum initiates the attachment by clamping a host's surface with longitudinally folded haptor and then secures its position with marginal hooks.