The fracture strength of β-Mg17Al12 and τ-Mg32(Al, Zn)49 intermetallic coatings on AZ91E Mg alloy was investigated using a nanoindentation-based microcantilever bending technique. A set of micrometer-sized cantilevers with varying dimensions were machined using focused ion beam milling. A nanoindenter was then used to apply an increasing bending load until each cantilever fractured. The corresponding linear-elastic finite element models were created to simulate the deflection of the cantilevers and the fracture strength σm was derived from the models. The results showed that the fracture occurred at the root of the cantilever where the tensile stresses were highest; the average fracture strengths of the β-Mg17Al12 and τ-Mg32(Al, Zn)49 phases were 1.76 and 1.05 GPa, respectively. The potential sources of error are also discussed.