To facilitate the completion of their life-cycle, many helminth parasites have evolved the ability to manipulate the behaviour of their intermediate host in order to make it more likely to be eaten by the parasite's definitive host. Here, we determined whether the cestode Eubothrium salvelini modifies the behaviour of its intermediate host, the copepod Cyclops vernalis, and makes it more susceptible to predation by brook trout, Salvelinus fontinalis, the parasite's final host. Following the experimental infection of copepods, the spontaneous activity of infected and control subjects was quantified weekly. In addition, we regularly quantified predation by individual brook trout fry on known numbers of infected and control copepods. At approximately the time when the cestode larvae became infective to fish (2–3 weeks following infection), the infected copepods started to swim more actively than uninfected controls. Also at that time, infected individuals became more likely to be captured by fish than uninfected ones. Copepod size and intensity of infection had no significant effect on their behaviour or their risk of being eaten by fish. Thus cestode- induced changes in copepod swimming activity can lead to infected copepods becoming highly vulnerable to fish predators, and may have resulted from selection on the parasite to increase its transmission success