We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A probabilistic generative network model with $n$ nodes and $m$ overlapping layers is obtained as a superposition of $m$ mutually independent Bernoulli random graphs of varying size and strength. When $n$ and $m$ are large and of the same order of magnitude, the model admits a sparse limiting regime with a tunable power-law degree distribution and nonvanishing clustering coefficient. In this article, we prove an asymptotic formula for the joint degree distribution of adjacent nodes. This yields a simple analytical formula for the model assortativity and opens up ways to analyze rank correlation coefficients suitable for random graphs with heavy-tailed degree distributions. We also study the effects of power laws on the asymptotic joint degree distributions.
We consider a simple preferential attachment graph process, which begins with a finite graph and in which a new (t + 1)st vertex is added at each subsequent time step t that is connected to each previous vertex u ≤ t with probability du(t)/t, where du(t) is the degree of u at time t. We analyse the graph obtained as the infinite limit of this process, and we show that, as long as the initial finite graph is neither edgeless nor complete, with probability 1 the outcome will be a copy of the Rado graph augmented with a finite number of either isolated or universal vertices.
We define a growing model of random graphs. Given a sequence of non-negative integers {dn}n=0∞ with the property that di≤i, we construct a random graph on countably infinitely many vertices v0, v1… by the following process: vertex vi is connected to a subset of {v0, …, vi−1} of cardinality di chosen uniformly at random. We study the resulting probability space. In particular, we give a new characterization of random graphs, and we also give probabilistic methods for constructing infinite random trees.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.