We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electronic Benefit Transfer (EBT) placement at farmers’ markets can reduce access disparities for low-income consumers. However, resources needed to operate EBT programs may challenge markets’ business models. A conceptual model of factors impacting EBT program success was developed from literature, and an exploratory study conducted to assess the impact of model variables on market EBT sales.
Design:
Annual EBT sales data were obtained for all Hawai‘i farmers’ markets with EBT programs (n 22). Key informant interviews (n 19), along with records review, were performed to gather data on model variables. Exploratory analysis was conducted to estimate the impact of individual model variables on EBT sales.
Setting:
Farmers’ markets accepting EBT in the state of Hawai‘i.
Participants:
Market managers and EBT program partners (n 19).
Results:
Markets engaging in community partnerships $\left( {{\mkern 1mu} {\mkern 1mu} \Delta \overline x = \$ 852} \right)$, consumer education $\left( {{\mkern 1mu} {\mkern 1mu} \Delta \overline x = \$ {\rm{598}}} \right)$, social media promotion $\left( {{\mkern 1mu} {\mkern 1mu} \Delta \overline x = \$ {\rm{732}}} \right)$ or EBT incentives $\left( {{\mkern 1mu} {\mkern 1mu} \Delta \overline x = \$ {\rm{5}}0{\rm{9}}} \right)$ averaged higher sales than markets not reporting these practices. Sales increased by $3 for every ten additional SNAP-participating households and decreased by $35 for each competing EBT-accepting supermarket, grocery or farmers’ market within the market’s access area. Sales increased by $137/vendor for each additional hour/week the market was open.
Conclusion:
Factors suggested by the model, particularly community engagement and partnership, marketing methods, consumer base and competition for EBT sales in the market area substantively affected EBT sales. Assessing these factors may identify markets with the greatest chance of EBT success and suggest ways to strengthen struggling EBT programs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.