We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Eaton (1992) considered a general parametric statistical model paired with an improper prior distribution for the parameter and proved that if a certain Markov chain, constructed using the model and the prior, is recurrent, then the improper prior is strongly admissible, which (roughly speaking) means that the generalized Bayes estimators derived from the corresponding posterior distribution are admissible. Hobert and Robert (1999) proved that Eaton’s Markov chain is recurrent if and only if its so-called conjugate Markov chain is recurrent. The focus of this paper is a family of Markov chains that contains all of the conjugate chains that arise in the context of a Poisson model paired with an arbitrary improper prior for the mean parameter. Sufficient conditions for recurrence and transience are developed and these are used to establish new results concerning the strong admissibility of non-conjugate improper priors for the Poisson mean.
We study the ring of regular functions on the space of planar electrical networks, which we coin the grove algebra. This algebra is an electrical analog of the Plücker ring studied classically in invariant theory. We develop the combinatorics of double groves to study the grove algebra, and find a quadratic Gröbner basis for the grove ideal.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.