We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The motion of a particle is investigated in the presence of a velocity-dependent random force assumed to be proportional to velocity. Two different possibilities are considered, namely, the presence and absence of random driving force. In the absence of random driving force, the velocity and displacement auto-correlation function are calculated. The probability distribution in velocity space is also evaluated. It is found that in the absence of intrinsic damping, the energy of the particle increases without limit. The condition for the energetic stability of the particle in the presence of random driving force is obtained. The Fokker-Planck equation for the probability distribution in velocity space is derived from the stochastic Liouville equation for delta-correlated velocity-dependent random force.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.