In the previous paper ring (Osmanov 2016) (henceforth Paper-I) we have extended the idea of Freeman Dyson and have shown that a supercivilization has to use ring-like megastructures around pulsars instead of a spherical shell. In this work we reexamine the same problem in the observational context and we show that facilities of modern infrared (IR) telescopes (Very Large Telescope Interferometer and Wide-field Infrared Survey Explorer (WISE)) might efficiently monitor the nearby zone of the solar system and search for the IR Dyson-rings up to distances of the order of 0.2 kpc, corresponding to the current highest achievable angular resolution, 0.001 mas. In this case the total number of pulsars in the observationally reachable area is about 64 ± 21. We show that pulsars from the distance of the order of ~ 1 kpc are still visible for WISE as point-like sources but in order to confirm that the object is the neutron star, one has to use the ultraviolet telescopes, which at this moment cannot provide enough sensitivity.