This paper studies the existence, in a stable GI/M/1 queue, of the limit as t → ∞ of the distribution of the virtual waiting time process at time t conditioned on the event that at no time in the interval [0, t] the queue has become empty. The conditional limit distribution obtained when the traffic intensity is strictly less than one is the weighted sum of an exponential and a gamma distribution. Similar conditional limit distributions are obtained for the queue size process and the waiting time process as defined by Prabhu (1964).