We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Four arctic offshore loading concepts are selected, loading from the corner of a platform, loading in the wake of a loading tower, Submerged Turret Loading (STL) and Single Anchor Loading (SAL). The influence of variations in the ice drift direction on the performance of these concepts is discussed and critical drift events are determined. Ice drift measurements from eight ARGOS/GPS buoys deployed in the Pechora Sea in winters 1995 and 1998 are analysed to estimate downtime rates of these loading systems due to ice drift heading changes. Depending on the location in the Pechora Sea and the chosen concept, downtime rates range from 6 to 72%. A discussion on how these rates will vary with different assumptions, different ice conditions or different ice management is given. Finally the loading concepts are compared through a qualitative risk analysis.
In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.
We obtain the equilibrium solutions of an R-out-of-N system subject to random breakdown. There are M spares and a single repairman, who instals good spares into the system when breakdowns occur and also repairs the failed items. Installation has pre-emptive repeat priority over repairs. Arbitrary distributions of installation and repair times are allowed. Equilibrium availability and downtime distributions are obtained from the equilibrium state distribution.
We consider two models for the reliability of a series system of components with spares, serviced by a single service facility. Replacement of failed components by a spare has pre-emptive priority over repair of the failed components; the models differ in whether interrupted repairs resume from where they left off, or restart from the beginning. We find the availability of such systems: numerical results indicate that this is insensitive to the shape of the repair-time and replacement-time distributions. We also obtain the distribution of system downtime for these models.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.