A system of two parallel queues is considered, where each customer must leave after service through a common gate G. It is assumed that service times at the two stations I and II are independent and identically distributed, and that exit service takes a fixed length of time. A I-customer may be served at station I only if the previous I-customer has completed exit service. Integral equations are formulated from which the distribution of the total service time may be obtained when the two queue sizes are infinite. These equations are solved for exponential and generalized erlangian service times. Extensions to the case of k parallel queues and to the case of Poisson arrivals and finite queue sizes are discussed briefly.