We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A single-server queue with batch arrivals in a non-homogeneous Poisson process and with balking is studied with respect to the busy period, using supplementary variables. A system of integral equations is obtained on the base of which the transforms are expressed in series. For the homogeneous case, assuming finite waiting room, the solutions are obtained via Cramer's rule. This gives asymptotic expressions for the expectations for large arrival intensity. An efficiency measure giving the long run loss probability is given. For a special case contour integral representations are given as solutions.
An M/G/1 service system with finite waiting room is studied. A customer is served by one server in two phases, during the first of which a place in the waiting room is occupied. Starting from a determinant expression for the Laplace-Stieltjes transform of the busy period given in [2] we obtain contour integral expressions for the transform and the expectation, thereby generalising a result by Cohen [1]. This is effected by developing the determinants along the first row.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.