The is insufficient knowledge of arthropod communities occurring in specific microhabitats. In this study, we characterize the arthropod assemblages inhabiting burrows of the common hamster (Cricetus cricetus L.) and factors that determine their diversity and abundance. We tested the following hypotheses: (1) arthropod assemblages are associated with a particular dominant vegetation occurring in the vicinity of burrows; (2) a correlation exists between fine-scale geographic distances among burrows and assemblage dissimilarity; and (3) the type of trap influences the sampling success of captured arthropods. We found 73 morphospecies belonging to 16 families in 109 burrows, most of which were in the families Staphylinidae (Coleoptera) and Parasitidae (Arachnida: Acari: Mesostigmata). The most abundant families were Staphylinidae, Cryptophagidae (Coleoptera), Parasitidae, and Macrochelidae (Mesostigmata) (78.89%). Among the identified species, we found Aleochara irmgardis (Staphylinidae) and Poecilochirus sexclavatus (Parasitidae) which had not yet been reported in Poland, and several other rare species. Meat-baited traps captured 64.34% more individuals, which were more diverse and species-rich than the non-baited control traps, but the former was more selective for saprophages, necrophages, and coprophages. The burrows located in areas overgrown by triticale (a hybrid of wheat and rye) were inhabited by 69.86% of the identified arthropod species, and these also had the highest abundance (64.07%) in comparison with other habitats. However, differences in sample size biased our results toward and overestimate arthropods associated with this vegetation. This study underlines that the species composition detected in burrows was affected by the methods used and hamster preferences for a specific habitat rather than the geographic proximity of the burrows. More extensive sampling across multiple habitats will be necessary to confirm our findings.