A numerical coupled thermoplasticity multiscale procedure for small strain analysis is developed in the finite element environment. It is suitable for simulation of thermo-mechanical behavior and overall response of metallic materials, using standard approximation method based on the concept of representative volume element (RVE). The local level isothermal analysis that models the micro-scale, is fully coupled to the global level non-isothermal analysis. The global macro-scale tangent stiffness operator is obtained using numerical differentiation procedure using the forward difference scheme. The numerical procedure is developed for two-dimensional problems, using Abaqus user-defined subroutines. Applicability of the proposed framework is presented on several representative examples.