We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Serpentinised ultramafic bodies containing zoned chromite grains occur in the Cordillera Frontal Range, western Argentina. Chromites show Zn-rich Al-chromite cores (4.04 wt.% ZnO) surrounded by ferritchromite rims (1.3 wt.% ZnO) and outer Cr-magnetite rims. In intensely altered chromites which are spatially related to sulphide mineralisation, the primary chromite cores have been replaced by Zn-rich ferritchromit (7 wt.% ZnO) and they are rimmed by Cr-magnetite. In the Al-chromites the mean [Cr/(Cr + Al] ratio is 0.53 and the [Mg/(Mg + Fe)] ratio is 0.53; they plot in the field of Alpinetype intrusions. Ferritchromit has a mean [Cr/(Cr + Al)] ratio of 0.93 and [Mg/(Mg + Fe)] ratio of 0.4. In Cr-magnetites the mean [Cr/(Cr + Al) is 0.98 and the [Mg/(Mg + Fe)] ratio is 0. Ferritchromit is always surrounded by a Cr-magnetite rim and it was formed as a reaction product owing to the irreversible dissolution of primary chromite cores. The dissolution of these cores provided the essential components for ferritchromit growth. Zn was introduced into the chromite cores and ferritchromit rims during the formation of the latter. Step-scan profiles have shown that the Zn content in the cores increases from the centre to their outer border, where they show the highest Zn values. It is suggested that Zn was introduced by the fluid phase involved in the alteration process that affected the cores and lead to the formation of the zoned chromite grains. This alteration process was also responsible for the changes in [Cr/(Cr + Al)] and [Mg/(Mg + Fe)] ratios.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.