We study the reduction in a
$\lambda$
-calculus derived from Moggi’s computational one, which we call the computational core. The reduction relation consists of rules obtained by orienting three monadic laws. Such laws, in particular associativity and identity, introduce intricacies in the operational analysis. We investigate the central notions of returning a value versus having a normal form and address the question of normalizing strategies. Our analysis relies on factorization results.