We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well-known that an element of a commutative ring with identity is nilpotent if, and only if , it lies in every prime ideal of the ring. A modification of this fact is amenable to a very simple proof mining analysis. We formulate a quantitative version of this modification and obtain an explicit bound. We present an application. This proof mining analysis is the leitmotif for some comments and observations on the methodology of computational extraction. In particular, we emphasize that the formulation of quantitative versions of ordinary mathematical theorems is of independent interest from proof mining metatheorems.
Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings $R$ with identity. The classical ring of quotients $Q$ of $R$ will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2–3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4–5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums $\oplus Q$ one has to take the full subcategory of $Q$-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which $Q$ has projective dimension $1$ (Theorem 6.4).
Dans plusieurs articles, A. R. Prince développe une représentation d’un plan projectif fini par un anneau commutatif unitaire dont les propriétés algébriques dépendent de la structure géométrique du plan. Dans un autre article, il étend cette représentation aux designs symétriques. Cependant D.-S. Yin fait remarquer que la multiplication définie dans ce cas ne peut être associative que si le design est un plan projectif. Dans cet article on mènera une étude de cette représentation dans le cas des designs symétriques. On y montrera comment on peut faire associer un anneau commutatif unitaire à tout design symétrique; on y précisera certaines de ses propriétés, en particulier, celles qui relèvent de son invariance. On caractérisera aussi les géométries projectives finies de dimension supérieure moyennant cette représentation.
In this paper we investigate the center, radius and girth of comaximal graphs of commutative rings. We also provide some counterexamples to the results concerning the relation between isomorphisms of comaximal graphs and the rings in question. In addition, we investigate the relation between the comaximal graph of a ring and its subrings of a certain type.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.