We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a new approach to simulate the propagation of elastic and cohesive cracks under mode-I loading based on the vector form intrinsic finite element method. The proposed approach can handle crack propagation without requiring global stiffness matrices and extra weak stiffness elements. The structure is simulated by mass particles whose motions are governed by the Newton's second law. Elastic and cohesive crack propagation are simulated by proposed VFIFE-J-integral and VFIFE-FCM methods, respectively. The VFIFE-J-integral method is based on vector form intrinsic finite element (VFIFE) and J-integral methods to calculate the stress intensity factors at the crack tips, and the VFIFE-FCM method combines VFIFE and fictitious crack models (FCM). When the stress state at the crack tip meets the fracture criterion, the mass particle at the crack tip is separated into two particles. The crack then extends in the plate until the plate splits into two parts. The proposed VFIFE-J-integral method was validated by elastic crack simulation of a notched plate, and the VFIFE-FCM method by cohesive crack propagation of a three point bending beam. As assembly of the global stiffness matrix is avoided and each mass particle motion is calculated independently, the proposed method is easy and efficient. Numerical comparisons demonstrate that the present results predicted by the VFIFE method are in agreement with previous analytical, numerical and experimental works.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.