It is proved in this paper that for any non-elementary subgroup $G$ of $\mathrm{PSL}(2,\sGa_n)$, which has no elliptic element, to be not strict, there is a minimal generating system of $G$ consisting of loxodromic elements, and that if $G$ is a non-elementary subgroup of $\mathrm{PSL}(2,\sGa_n)$ of which each loxodromic element is hyperbolic, then $G$ is conjugate to a subgroup of $\mathrm{PSL}(2,\mathbb{R})$.
AMS 2000 Mathematics subject classification: Primary 30F40. Secondary 20H10