This paper investigates the suitability of auxetic materials for load-bearing circular plates. It is herein shown that the optimal Poisson's ratio for minimizing the bending stresses is strongly dependent on the final deformed shape, load distribution, and the type of edge supports. Specifically, the use of auxetic material for circular plates is recommended when (a) the plate is bent into a spherical or spherical-like cap, (b) a point load is applied to the center of the plate regardless of the edge conditions, and (c) a uniform load is applied on a simply-supported plate. However, auxetic materials are disadvantaged when a flat plate is to be bent into a saddle-like shell. The optimal Poisson's ratios concept recommended in this paper is useful for providing an added design consideration. In most cases, the use of auxetic materials for laterally loaded circular plates is more advantageous compared to the use of materials with conventional Poisson's ratio, with other factors fixed. This is achieved through materials-based stress re-distribution in addition to the common practices of dimensioning-based stress redistribution and materials strengthening.