We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Forest fires convert a proportion of the burning vegetation into charcoal that is stored in forest soils and lake sediments. In this paper we use a geostatistical approach to present a detailed analysis of the size of the charcoal pool and its spatial variation in a boreal forest watershed including its lake sediment. The amount of soil charcoal averaged 179 g/m2 and ranged from 0 to 3600 g/m2 in the watershed. There was an extreme variation in the size of the charcoal pool over fine (cm) spatial scales. For example, the amount of charcoal in the soil could range from 34 to 1646 g/m2 within a distance of 10 cm. Individually dated soil charcoal particles had radiocarbon ages that varied from 630 to 2930 cal yr BP. The lake sediment began accumulating at 10,600 cal yr BP and charcoal accumulation has been practically continuous ever since then, with the largest peak occurring at 6900 cal yr BP. The lake sediment contained more charcoal, 360 g/m2, than the average for forest soil. We interpret this as an indication of a relatively rapid degradation of charcoal in boreal forest soils.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.