We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our aim is to estimate the volume-weighted mean of the volumes of three-dimensional ‘particles’ (compact, not-necessarily-convex subsets) from plane sections of the particle population. The standard stereological technique is to place test lines in the plane section, and measure cubed intercept lengths with the two-dimensional particle profiles. This paper discusses more efficient estimators obtained by integrating over all possible placements of the test line. We prove that these estimators have smaller variance than the line transect estimators, and indeed are related to them by the Rao-Blackwell process. In the improved estimators, the cubed intercept length is replaced by a moment of the distance between two points in the section profile. This can be computed as a moment of the set covariance function, which in turn is computable using the fast Fourier transform. We also derive an isoperimetric-type inequality between the improved estimator and the area-weighted 3/2th moment of the profile areas. Finally, we present two practical applications to particles of silicon carbide and to synaptic boutons in brain tissue. We estimate the variance of the technique and the gain in efficiency over line transect techniques; the efficiency improvement appears to be as much as one order of magnitude.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.