We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pH of deionized water, initially adjusted to a pH of 6 to 9, all decreased to near pH 5 upon pressurization with CO2 in a backpack spray system. When deionized water contained bicarbonate (NaHCO3 or KHCO3) at 0 to 800 mg/L to buffer against a pH decrease from CO2 pressurization the return to their initial pH was more rapid than deionized water alone regardless of bicarbonate source. Acidification of spray solution following CO2 pressurization of 138, 276, or 414 kPa was similar and bicarbonate had a greater effect than spray pressure. Addition of acidifying buffer and bicarbonate to the solution resulted in an initial and post-CO2 pressurization pH range of less than one pH unit. All spray solution pH levels returned to near their initial pH following depressurization, indicating that the pH decrease was not permanent. Rate of recovery from acidification with CO2 increased with initial pH and bicarbonate concentration.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.