We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Contact heat is commonly used in experimental research to evoke brain activity, most frequently acquired with electroencephalography (EEG). Although magnetoencephalography (MEG) improves spatial resolution, using some contact heat stimulators with MEG can present methodological challenges. This systematic review assesses studies that utilise contact heat in MEG, their findings and possible directions for further research.
Methods:
Eight electronic databases were searched for relevant studies, in addition to the selected papers' reference lists, citations and ConnectedPapers maps. Best practice recommendations for systematic reviews were followed. Papers met inclusion criteria if they used MEG to record brain activity in conjunction with contact heat, regardless of stimulator equipment or paradigm.
Results:
Of 646 search results, seven studies met the inclusion criteria. Studies demonstrated effective electromagnetic artefact removal from MEG data, the ability to elicit affective anticipation and differences in deep brain stimulation responders. We identify contact heat stimulus parameters that should be reported in publications to ensure comparisons between data outcomes are consistent.
Conclusions:
Contact heat is a viable alternative to laser or electrical stimulation in experimental research, and methods exist to successfully mitigate any electromagnetic noise generated by PATHWAY CHEPS equipment – though there is a dearth of literature exploring the post-stimulus time window.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.