Let {ξk : k ≧ 1} be a sequence of independent, identically distributed random variables with E{ξ1} = μ ≠ 0. Form the random walk {Sn : n ≧ 0} by setting S0, Sn = ξ1 + ξ2 + ··· + ξn, n ≧ 1. Define the random function Xn by setting where α is a norming constant. Let N denote the hitting time of the set (–∞, 0] by the random walk. The principal result in this paper is to show (under appropriate conditions on the distribution of ξ1) that the finite-dimensional distributions of Xn, conditioned on n < N < ∞ converge to those of the Brownian excursion process.